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Sex determination is a major switch in the evolutionary history

of angiosperm, resulting 11% monoecious and dioecious

species. The genomic sequences of papaya sex

chromosomes unveiled the molecular basis of recombination

suppression in the sex determination region, and candidate

genes for sex determination. Identification and analyses of

sex determination genes in cucurbits and maize

demonstrated conservation of sex determination mechanism

in one lineage and divergence between the two systems.

Epigenetic control and hormonal influence of sex

determination were elucidated in both plants and animals.

Intensive investigation of potential sex determination genes in

model species will improve our understanding of sex

determination gene network. Such network will in turn

accelerate the identification of sex determination genes in

dioecious species with sex chromosomes, which are

burdensome due to no recombination in sex determining

regions. The sex determination genes in dioecious

species are crucial for understanding the origin of dioecy and

sex chromosomes, particularly in their early stage of

evolution.
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Introduction
Sex determination in flowering plants is a fascinating

subject with evolutionary, biological, and economic sig-

nificance. Identification of sex determination genes and

understanding their interacting gene network are challen-

ging because of the difficulty working on monoecious and

dioecious species. For monoecious species, there is no
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sexual dimorphism among individual plants, and identi-

fication of sex determination genes relies on sex reversal

mutant collections, which are only available for inten-

sively studied monoecious crop plants, such as maize,

melon, and cucumber. For dioecious species, sex deter-

mination genes often reside on sex chromosomes with a

non-recombining sex determination region, which make

identification of the sex determination genes rather diffi-

cult due to the need to overcome the non-recombining

heterogametic chromosome Y or W where the functioning

sex determination genes located in.

Male sterile and female sterile mutations could occur at any

stage of stamen and carpel development from inception of

floral organ primordia to male and female gametophyte

genesis. This has been demonstrated by the random distri-

bution of stamen and carpel abortion throughout the

developmental process in unisexual flowers [1��]. This

random distribution could occur within the same family,

which makes the evolution of sex determination in flower-

ing plants appear to be neither conserved nor convergent.

However, it should be noted that sex determination genes

could be conserved among closely related taxa within a

family as demonstrated in cucurbits [2–4].

On the bright side, the rapid advance of genomic tech-

nologies expedites the investigation of sex determination

genes and regulatory mechanisms of gene network. Sex

determination genes have been identified in maize and

melon, and epigenetic control of sex determination was

shown in both plant and animal systems. Hormonal

influence on sex determination were prominent in both

maize and melon sex determination networks.

From sex chromosomes to sex determination
in dioecious species
Dioecy is the precondition for the evolution of sex

chromosomes [5,6]. The percentage of sex chromosomes

in dioecious species in any lineage has not been assessed

due to the lack of genetic and molecular data on sex

determination for vast majority of dioecious species.

Among dioecious species with cytogenetic, genetic, or

molecular evidence for sex determination, all appear to

have either heteromorphic or homomorphic sex chromo-

somes. Among the 10 species with evidence of sex

chromosomes in hapatics, mosses, and gymnosperm, all

have heteromorphic sex chromosomes, supporting their

ancient origin. In angiosperm, 19 (51%) of the 37 species

with sex chromosomes are homomorphic, likely reflecting

their recent origin. Despite the lowest percentage of
www.sciencedirect.com
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The genomic expansion of the X and Y chromosomes in papaya in

comparison with the orthologous autosomal region in monoecious V.

monoica. The X chromosome expanded 2.3� than the orthologous

autosome, and the HSY expanded 2.3� than the X chromosome and

5.3� than the orthologous autosome.
dioecious species in angiosperm, more species with sex

chromosomes were reported than those in other lineages

combined. This is due to economic importance of dioe-

cious crops and the overwhelming dominance of angios-

perm on earth, which accounts for 90% of all land plant

species [7]. It should be noted that homomorphic sex

chromosomes could exist in ancient lineage as shown in

European tree frogs [8].

The prevalence of sex chromosomes in dioecious species

hindered the identification of sex determination genes

because map based cloning approach is not suitable in a

non-recombining male specific region of the Y chromo-

some (MSY) or female specific region of the W chromo-

some (FSW). Silene latifolia has been a classical model

system for sex chromosome research in plants because the

Y and X chromosomes are the largest and second largest in

the genome that are readily distinguishable. Although sex

reversal deletion lines were generated [9], genomic

sequences of the sex chromosomes are still lacking for

identification of sex determination genes. Recent

advance in genomic technologies expedited the identifi-

cation of X and Y linked genes and allowed the detection

of dosage compensation of X-linked genes merely after 10

million years of sex chromosome evolution [10�,11�,12�],
and assessing the synteny between the pseudo-autosomal

region (PAR) of the Y chromosome in S. latifolia and the

orthologous autosomal region in S. vulgaris [13].

The trioecious papaya emerged as a model species for sex

chromosome research in plants due to its small genome,

short generation time, and economic importance as a highly

productive tropical fruit crop. Sex determination in papaya

is controlled by a pair of recently evolved sex chromosomes

with two slightly different Y chromosomes, Y controlling

male and Yh controlling hermaphrodite [14]. The 8.1 Mb

hermaphrodite-specific region of the Yh chromosome

(HSY) and its 3.5 Mb X chromosome counterpart were

sequenced and annotated, becoming the second sex

chromosome pairs to be fully sequenced beside the XY

chromosomes in human [15,16��,17,18,19��] (Figure 1).

The alignment of paired genes and pseudogenes between

X and HSY revealed two evolutionary strata, corresponding

to two large scale inversions in the HSY. The first inversion

occurred about 7 million years ago (mya) and the second

inversion 1.9 mya. The HSY contains 72 annotated genes,

whereas the X counterpart contains 84 genes. Comparison

of X and Y annotated genes revealed 50 paired, 22 HSY-

specific, and 34 X-specific genes. The HSY- and X-specific

genes are mostly located in the first inversion, including 20

(91%) HSY-specific and 26 (76%) X-specific genes, reflect-

ing gene gain and loss after the recombination ceased 7

mya. Identification and validation of sex determination

genes are ongoing.

Identification of sex determination genes is actively pur-

sued in asparagus and strawberry. An integrated genetic
www.sciencedirect.com 
and physical map of the sex determination locus has been

constructed in asparagus [20]. Targeted sequence capture

from 103 segregating F1 individuals placed the male

sterility gene in a 338 kb region of chromosome 4 in

gynodioecious diploid Fragaria vesca ssp. Bracteata [21��].

Plant sex determination genes identified so far are from

monoecious species by map based cloning approach since

there is no recombination suppression at the sex deter-

mination loci. Our understanding of sex determination

gene network is mostly from the following two systems:

cucurbits and maize.

Sex determination in monoecious species
Sex determination in melon (Cucumis melo L.) is controlled

by two unlinked genes, andromonoecious (a) and gynoecious
(g) [22]. Wild type melon is monoecious with the genotype

A-G-, andromonoecious aaG-, gynoecious AAgg, and her-

maphrodite aagg. Map based cloning of the A locus ident-

ified CmACS-7, a gene encoding the rate limiting enzyme in
Current Opinion in Plant Biology 2014, 18:110–116
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ethylene biosynthesis, the 1-aminocyclopropane-1-car-

boxylic acid synthase (ACS), which is expressed in carpel

primordia, and loss of enzymatic activity leads to stamen

development [2]. The G locus encodes a C2H2 zinc finger

transcription factor CmWIP1, and recessive g allele has an

insertion at the 30 end 1.3 kb from the stop codon by a DNA

transposon of the hAT family, termed Gyno-hAT, which is

required for the initiation and maintenance of DNA meth-

ylation of CmWIP1 [23]. Loss of CmWIP1 function leads to

carpel development.

The interaction between these two genes results in a

range of sexual phenotype. CmACS-7 is expressed in

carpel to suppress stamen development, and the CmWIP1
is epistatic to CmACS-7 by controlling carpel develop-

ment where the CmACS-7 is expressed. Expression of

CmWIP1 gene leads to carpel abortion and hence the lack

of CmACS-7 expression that suppress stamen develop-

ment, resulting in male flowers. Loss of function mutation

in CmWIP1 leads to carpel development and CmACS-7 to

express in carpels to suppress stamen development,

resulting in female flowers. Loss of function mutations

in both CmACS-7 and CmWIP1allows carpel and stamen to

develop, resulting in hermaphrodite flowers (Figure 2a).

In monoecious cucumber (Cucumis sativus L.) sex deter-

mination is controlled by three major genes. The F gene

is partially dominant and controls the degree of female-

ness and FF genotype is gynoecious. The recessive a
gene increases maleness, and plants with aaff genotype

are androecious. The monoecious dominant M gene

controls selective abortion of stamens [24]. The M-ff
genotype is monoecious, M-F- gynoecious, and mmF-
hermaphrodite. The F locus is linked to an ACS gene,

CsACS1G, which is a duplicated copy in gynoecious lines,

not present in monoecious lines [25,26]. The M locus

encodes CsACS2, an ortholog of CmACS-7, showing con-

servation of gene function in these two species of Cucumis
that were diverged about 3 million years ago [3]. A

positive feedback regulation mechanism was proposed

for CsACS2 from a study expressing CsACS2 in transgenic

tobacco, emphasizing the importance of ethylene on sex

determination in cucumber [27��]. Ethylene perception is

involved in stamen abortion as the ethylene receptor,

CsETR1, was down regulated in the stamens of stage 6

female flowers and primordial anther-specific DNA

damage was observed in stage 7 female flowers [28,29].

The intensive genetic research in maize in the past

century produced a large collection of heritable mutants,

including many sex reversal mutants. The first plant sex

determination gene was cloned in maize [30]. Since then

many mutants affecting sex determination have been

characterized. There are six tasselseeds mutants affecting

male flower (tassel) development, plus a dwarf mutant

na1 also showing tasselseeds phenotype. These seven

mutants could be categorized into three classes. Class I
Current Opinion in Plant Biology 2014, 18:110–116 
includes recessive mutants ts1 and ts2 and dominant

mutants Ts3 and Ts5, which cause sex reversal from male

to female flowers with more severe phenotype from the

two recessive mutants than the two dominant mutants.

Class II includes recessive mutant ts4 and dominant

mutant Ts6, which cause a lack of female abortion in

the male flowers and irregular branching within the

inflorescence. Class III includes recessive mutant na1,

which causes feminized male flowers and severe

reduction of plant stature, contrasting to the normal plant

height of the other six tasselseeds mutants. The ts1 gene

encodes a plastid-targeted lipoxygenase with predicted

13-lipoxygenase specificity in the jasmonic acid biosyn-

thesis pathway, indicating the role of jasmonic acid on

promoting male flower development in maize [31]. The

ts2 gene encodes a short chain dehydrogenase/reductase

with broad activity [30], and the dehydrogenase/reductase

activity may produce a proapoptotic signal or metabolize a

substrate for cell viability [32,33]. The class II gene ts4
encodes a microRNA gene zma-miR172e targeting AP2
floral homeotic transcription factors [34]. The indetermi-
nate spikelet1 (ids1) gene encodes an AP2 protein [35], and

it is a target of ts4. The dominant Ts6 mutant is a G to T

transversion mutation of the ids1 gene near the 50 end of

the ts4 binding site. The dominant nature of Ts6 mutant is

from preventing silencing of ids1 gene by the negative

regulator zma-miR172e. The class III gene na1 encodes

DE-ETIOLATED2 (DET2) enzyme in the Brassinosteroid

biosynthesis pathway, indicating the role of steroid hor-

mone promoting male organ development, as in animal

system [36��] (Figure 2b–d).

Sex determination genes affecting female flower devel-

opment in maize have been characterized, all involved in

the gibberelic acid (GA) biosynthesis or perception. The

anther ear (an1) gene encodes ent-kaurene synthase A (ent-

copalyl-diphosphate diphosphate-lyase) in ent-kaurene

biosynthesis, the first step of GA biosynthesis [37]. The

dwarf mutant d3 gene encodes a cytochrome P450 enzyme,

ent-kaurenoic acid oxidase (KAO), which catalyze the last

three steps of GA biosynthesis [38,39]. The dominant

dwarf mutant D8 gene encodes a member of the DELLA

protein with a conserved N-terminal gibberellin signaling

domain, an ortholog of the Gibberellin Insensitive (GAI) gene

in Arabidopsis, involved in GA perception or dose response

[40,41]. Metabolic studies of dwarf mutants in maize

indicated that dwarf mutants d1, d3, and d5 interrupted

GA biosynthesis [42]. The d1 gene controls three biosyn-

thetic steps from GA20 to GA1, GA20 to GA5, and GA5 to

GA3, where as d5 controls the step from Copalyl dipho-

sphate (CDP) to ent-kaurene [43] (Figure 2e).

Genetic regulation is the primary mode of action for sex

determination genes in plants, as shown by these sex

determination genes identified in cucurbits and maize.

However, plasticity of sex expression has been observed

in many monoecious and dioecious species, likely due to
www.sciencedirect.com
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Sex determination pathways in cucurbits and maize. (a) Model for sex determination in melon and cucumber based on Boualem et al. [2,3] and Martin

et al. [23], where CmACS-7/CsACS2 (A/M) and CmWIP1 (G) are repressors of stamen and carpel, respectively. (b–d) Model for gibberellins (GA),

jasmonic acid (JA) and brassinosteroids (BR) action in maize florets sex determination. (b) TS1 initiates the JA biosynthesis required for stamen

development in the tassel. TS2 have been proposed to be involved in the last steps of JA biosynthesis, but this proposal should be taken with caution.

The ts1 and ts2 mutants block JA biosynthesis and lead to transformation of the male tassel into female flower. (c) nana plant 1 mutant is affected in BR

biosynthesis. The reduced BR level in na1 mutant leads to feminization of the tassel. (d) Model for the tassel sex determination based on the negative

regulation of AP2 transcript by the miRNA 172. In normal male floret, AP2 mRNA is not translated because of the presence of the miRNA 172. (e)The

masculinizing dwarf mutants, an1, d1, d3, d5 affect different steps of gibberellins biosynthesis. These GA defective mutants do not undergo stamen

abortion in the female inflorescence and produce perfect florets in the ear.
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epigenetic regulation of sex determination genes. The

molecular mechanisms of epigenetic influence have been

elaborated in some plant and animal systems.

Epigenetic influence
Sex reversal under variable environmental conditions in

unisexual and hermaphroditic flowers is observed in some

plant taxa, including species with sex chromosomes. In

woody dioecious species Ilex integra, five of 47 trees

changed sex from female to male or male to female at

different years in a three-year period. The sex reversal is

complete for the entire tree and there is no monoecious

tree observed [44�]. In the genus Wurmbea, there is no sex

reversal in male flowers, but frequent sex reversal were

observed in female and hermaphrodite flower [45],

suggesting a ZW sex chromosome system with loss of

function recessive mutations for male flowers.

Direct evidence of epigenetic influence of expression in

plants is from the sex reversal of male to androhermaph-

rodite flowers in Silene latifolia after treating the seeds

with the nucleotide analog of 5-azacytidine, which

induces hypomethylation of DNA [46]. Silene latifolia
has an XY sex chromosome system, and the sex reversal

is likely triggered by inhibiting the carpel suppressing

gene in males.

More evidences of epigenetic influence of sex determi-

nation were accumulated in animals. In the temperature-

dependent sex determination species, sex expression can

be modified by the concentration of sex steroid hormones

in developing embryos. Cytochrome P450 aromatase,

cyp19a1, irreversibly catalyses androgen into estrogen,

and is overexpressed in differentiating ovaries and sup-

pressed during testis development. In the red-eared slider

turtles (Trachemys scripta), DNA methylation of the

aromatase gene promoter is significantly lower in

female-producing than in male-producing temperature.

A shift from male-producing to female-producing

temperature (not vice versa) changed the level of DNA

methylation of cyp19a1 promoter in gonads [47]. In

chicken, demethylation of a 170-nt promoter region of

cyp19a1 was significant but only partially in exogenous

estrogen induced sex reversal gonads comparing with

normal ZW females, reinforcing the role of epigenetic

influence on sex determination and sex expression [48].

In mice, methylation of histone H3 lysine 9 (H3K9)

suppress the transcription of the sex determination gene

Sry, and histone demethylase Jmjd1a epigenetically

regulate mouse sex determination by demethylating

H3K9me2, leading to activation of the Sry gene [49��].

Hormonal regulation
Plant hormones regulate diverse developmental pro-

cesses, including cell elongation, plant growth, flower

development, sex determination, and sex differentiation.

Ethylene is the primary hormone regulating sex
Current Opinion in Plant Biology 2014, 18:110–116 
determination in melon and cucumber, promoting female

development, as the a locus in melon and M locus in

cucumber are orthologs, CmACS-7 in melon and CsACS-2
in cucumber, encoding the rate limiting enzyme in ethyl-

ene biosynthesis [2]. The cucumber F locus is also a

duplicated ACS gene, CsACS1G [25,26]. The Other hor-

mones affecting sex expression in melon and cucumber

such as GA and auxin are likely through crosstalk be-

tween each of them with ethylene indirectly [50], and

there is no evidence that they are affecting sex determi-

nation or differentiation directly.

Three growth hormones are involved in sex determi-

nation in maize. GA promotes female flower development

as both the anther ear mutant an1 and the dwarf mutant

d3 are caused by mutation on GA biosynthesis pathway

[37,38]. JA promotes male flower development as ts1
encodes a gene involved in JA biosynthesis [31]. JA is

also known for its essential role on stamen filament

elongation and pollen maturation in Arabidopsis

[51,52]. BR, a plant hormone, shares structural similarities

with animal steroids, also promotes male flower devel-

opment [36��]. It is not clear whether there is crosstalk

between JA and BR, and which hormone is the decisive

factor for male sex determination in maize.

GA is known to regulate cell elongation and plant growth.

Ethylene is a major hormone for fruit maturation. JA and

BR are better known as stress response hormones. None

of them is a sex specific hormone. In fact, some growth

hormones have opposing effect on sex determination in

different lineage of flowering plants [53].

Conclusions
The lack of sex determination genes from dioecious

species is still a major gap in our understanding of the

origin of dioecy and sex chromosomes. Sequencing the

sex chromosomes in papaya provides the foundation for

identification of sex determination genes. From the sex

determination genes identified in cucurbits, conservation

of sex determination genes within a family could be

prevalent. It appears there is no conservation of sex

determination genes or pathways among plant families

and no obvious convergent evolution from the data accu-

mulated so far. Evidence of convergent evolution may

appear when many more sex determination genes are

identified in diverse lineages since the potential sex

determination genes and pathways are far less than the

approximate 11% or 37 840 monoecious and dioecious

species in angiosperm.
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